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Abstract
We investigated the gas sensing characteristics of graphene nanosheet (NS)-loaded SnO2

nanofibers (NFs) that were synthesized by a low-cost facile electrospinning process. The sensing
performance was characterized as a function of the graphene content with various gases such as
C6H6, C7H8, CO, CO2, and H2S. The loading of graphene NSs significantly improved the gas
sensing performances of SnO2 NFs. The optimal amount of graphene NSs was found to be
0.5 wt%. We proposed a sensing mechanism for the enhanced sensing performance based on the
chemical sensitization of graphene NSs and the charge transfer through the heterointerfaces
between graphene NSs and SnO2 nanograins. The results show that graphene NS-loaded SnO2

NFs are a promising sensing material system that can detect hazardous gaseous species.

S Online supplementary data available from stacks.iop.org/NANO/28/035501/mmedia
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1. Introduction

Tin dioxide (SnO2) was intensively studied for gas sensing
applications because of its good chemical and thermal stabi-
lity, high carrier density, and good detecting abilities to var-
ious toxic gases and organic vapors. Moreover, its stability at
higher temperatures makes it possible to use SnO2 in harsh
environments where explosive gases might exist. Therefore,
much of the research in the field of gas-sensors still focuses
on methods to further enhance the sensitivity and selectivity
of SnO2-based gas sensors. This is typically done by con-
trolling the nanostructure morphology and incorporating
various additive materials.

Since the morphology and surface state play a significant
role in changing the characteristics of sensing materials, dif-
ferent nanostructural configurations and surface morphologies
have been studied in attempts to meet the high sensitivity

requirements [1–3]. In this regard, one-dimensional SnO2

nanostructures, such as nanowires, nanotubes, nanofibers
(NFs), nanobelts, and nanorods have shown outstanding
chemical sensing performances relative to their bulk coun-
terparts. This difference in performance is caused by the
specific matetials properties of the nanostructures, which are
generally influenced by the high specific surface area and
confined directional carrier support. NFs synthesized by an
electrospinning possess an additional unique feature of a web-
like morphology, which enables gas molecules to readily
interact with and diffuse effectively into all the NFs simul-
taneously. This enhances the reaction speed and sensitivity.
Moreover, the presence of nanograins in the NFs provides
additional reaction sites and resistance modulation at grain
boundaries. Therefore, SnO2 NFs are promising for gas sen-
sing materials [4–7].

One of the other commonly and widely employed tech-
niques used to enhance the sensitivity or selectivity is the
incorporation of effective additive materials into the sensing
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host material. In this regard, many types of additives,
including noble metals, transition metals, semiconducting or
semimetal elements, light elements, rare-earth elements, and
organic materials, have been included in SnO2 hosts and have
been extensively studied for the sensing of various oxidizing
and reducing gases [8–13].

Among these, graphitic nanocarbons (particularly gra-
phene) have recently attracted extraordinary attention in the
gas sensor community because of their unique properties [14–
19]. This structure provides a large specific surface area
(2630 m2 g−1) [20, 21]. All atoms of graphene are essentially
surface atoms that are readily exposed to the target gas.
Furthermore, graphene has high thermal stability, excellent
electrical conductivity, good mechanical strength, high charge
carrier mobility, and extremely low electrical noise. As a
result, a small quantity of electrons can produce a significant
variation in the conductance of graphene [22]. All these
characteristics make graphene an attractive material for gas
sensing applications [23–25]. Although graphene-based sen-
sors have been used to detect poisonous and explosive gases
[26–28], graphene/SnO2 composites [13] have rarely been
investigated. In particular, the effect of graphene loading into
nanofibers (NFs) has not been investigated yet.

In this study, we explore the enhanced sensing perfor-
mances of SnO2 NFs loaded with graphene NSs for the first
time. The SnO2-graphene-related materials (i.e. graphene or
reduced graphene oxide (RGO)) nanocomposites were pre-
pared by a variety of methods (table S1, supporting informa-
tion). However, there are only a few papers from the authors of
the present paper, reporting the preparation in conjunction with
the nanofibers. Furthermore, in the present work, we used the
graphene instead of RGO, which is different from other RGO/
SnO2 NFs-comprising papers. We also discuss the sensing
mechanisms responsible for the enhanced sensing performance
realized by adding the graphene NSs.

2. Experimental details

2.1. Materials

Tin(II) chloride dehydrate (SnCl2·2H2O), polyvinyl acetate
(PVAc, Mw=850 000), ethanol (anhydrous, 99.5%), dime-
thylformamide (DMF, 99.8%), graphene, and de-ionized
water were used. All materials were purchased from Sigma-
Aldrich Corp. and were used without additional refining.

2.2. Synthesis and characterization of graphene

Expandable graphite (1 g, Hyundai Coma Industry) was put
into an alumina crucible. The reaction products were irra-
diated by rapid microwave heating for 1 min with a frequency
of 60 Hz and a power of 1000W. The exfoliated graphite was
sonicated in ethanol for 10 min and was subsequently dried in
a vacuum oven. The sonication and drying processes were
repeated three times to obtain graphene flakes that consisted
of a few layers. More details about the synthesis and char-
acterization procedures that were used in the present study

can be found in our previous reports [29, 30]. In the prep-
aration of few-layer graphene, they were irreversibly inter-
calated to ensure decoupling. Accordingly, it is surmised that
the graphite and the few-layer graphene exfoliated from them
will be in the mechanically decoupled configuration. How-
ever, the few-layer graphene will be expected to be elec-
trically connected (i.e. not insulated) to the surrounding SnO2

matrix, because the electronic transport across the graphene/
SnO2 enhances the sensing behavior.

2.3. Synthesis of graphene NS-loaded SnO2 NFs

Graphene NS-loaded SnO2 NFs were synthesized using elec-
trospinning. The process is very similar to the previous work
[19]. First, PVAc was dissolved by a solvent with equal
amounts of ethanol and DMF, and this mixture was con-
tinuously stirred for 4 h. Subsequently, SnCl2·2H2O and the
graphene solution were added to the PVAc solution and were
stirred continuously for 12 h without heating. The solution was
put into a syringe [19]. All the electrospinning experiments
were performed at room temperature in air. The NFs were
collected on SiO2-deposited (thickness∼250 nm) Si wafers.
The prepared electrospun NFs were calcined at 600 °C in air
for 30min at 5 °Cmin−1. The same procedure was adopted to
synthesize the graphene NS-loaded SnO2 NFs with different
graphene concentrations (0.05, 0.1, 0.3, 0.5, 1, and 1.5 wt%).
Further details of the procedure used to synthesize electrospun
SnO2 NFs are provided in our earlier report [31]. Previous
studies indicate that the RGO is stable at −10 °C–800 °C
[32, 33]. Accordingly, the graphene in the present work, which
is an RGO with the very small amount of oxygen, will be
stable not only during the sensing temperature of 300 °C, but
also during the calcination process at 600 °C. Furthermore, we
carried out the TGA test, in which no significant weight loss
was observed up to 900 °C, in case of pure RGO NSs [12].

2.4. Microstructural and sensing characterization

For microstructural characterization, we used scanning electron
microcopy (SEM, Hitachi S-4200) and high-resolution trans-
mission electron microscopy (HR-TEM, Phillips CM-200). To
investigate the sensing behavior of graphene NSs-loaded SnO2

NFs, double layer electrodes of Ti (thickness∼50 nm) and Pt
(thickness∼200 nm) were deposited by the radio frequency
magnetron sputtering at room temperature. The complete pro-
cedures used for the synthesis of graphene NS-loaded SnO2

NFs using electrospinning and the fabrication of sensing
devices are shown in figure 1. The gas sensing properties of the
graphene NS-loaded SnO2 NFs sensors towards various redu-
cing gases (CO, C7H8, C6H6, CO2, and H2S) at concentrations
ranging from 1–5 ppm were measured under atmospheric
conditions at an operating temperature between 200 °C and
400 °C. The sensors were placed and evaluated in a testing
chamber at constant temperature. Details of sensor design, gas
dilution, and the sensing system are provided in our earlier
reports [34, 35]. The sensors were stabilized for ∼20min in the
baseline gas (synthetic dry air) to obtain a stable resistance
at every operating temperature (prior to the gas sensing tests).
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The response of the sensors to the reducing gas is defined as
the ratio of Ra to Rg. Here, Ra is the original base resistance of
the sensor in air, and Rg is the stabilized resistance of the sensor
in the presence of the applied gas. The response time (τres)
corresponds to the time in which the resistance of the sensor
changes to 90% of the original base resistance, and the
recovery time (τrec) is the required time for the recovery of
90% of the signal.

3. Results and discussion

Figures 2(a)–(f) show the typical microstructures of the cal-
cined graphene NS-loaded SnO2 NFs containing various
amounts of graphene NSs. The average diameter of the NFs is
estimated to be 200–300 nm, and the lengths are in the range
of several micrometers. However, the size of the nanograins
and/or the diameter of the NFs were not significantly affected
by varying the graphene content. The presence of nanograins
on the NFs can be clearly seen. These nanograins evolved
during the calcination process. The upper-right insets show
that the NFs were uniformly and randomly distributed on the
SiO2/Si substrates. The polycrystalline nature of SnO2 NFs
(figure 3(a)) and the presence of graphene NSs (figures 3(b)
and (c)) were confirmed by HR-TEM. Figures 3(b) and (c)
show the presence of graphene sheets along with the nano-
grains of the NFs. As shown, NFs were anchored and dis-
persed on the larger graphene NSs (figure 3(b)), while some
of the graphene sheets were folded in between the nanograins
of the NFs (figure 3(c)). These results confirmed the multi-
layer graphene configuration. Understanding these kinds of
interactions between graphene NSs and SnO2 NFs is impor-
tant to understand the electrical transport properties and
sensing mechanism of graphene NS-loaded SnO2 NFs; this
will be discussed in the following paragraphs. The inter-pla-
nar distance of the SnO2 NFs was 0.33 nm, which corre-
sponds to the (110) crystallographic plane of the rutile SnO2

phase. Figure 3(d) shows the selected area diffraction ring
patterns of graphene NS-loaded SnO2 NFs. These can be

indexed to the rutile SnO2 structure (JCPDS Card No. 41-
1445). The weakness and invisibility of graphene-related
patterns is associated with the low graphene content. How-
ever, it is possible that there is a ring pattern that could be
indexed to the (002) plane of 2H graphite (JCPDS Card No.
75-1621), which overlaps with the (110) plane of the rutile
SnO2 structure. For comparison, a TEM image of pure gra-
phene (without SnO2 NFs) is provided in figures 3(e) and (f).
Based on figure 3, we concluded that we successfully syn-
thesized graphene NS-loaded SnO2 NFs.

To investigate the effect of the operating temperature, the
graphene NSs-loaded SnO2 NFs and pristine SnO2 NFs were
exposed to C7H8 gas at various temperatures (200, 250, 300,
325, 350, 375, and 400 °C) (figure 4(a)). Figure 4(b) shows
the responses of pristine SnO2 and graphene NS-loaded SnO2

NFs to 1 ppm of C7H8 gas at different temperatures. The
responses of the graphene NS-loaded SnO2 NFs were sig-
nificantly higher than the pristine SnO2 NFs for all tempera-
tures. It is also clear that graphene NSs-loaded SnO2 NFs
showed an increased response at lower temperatures with a
maximum response of 3.13 at 300 °C. The response became
less sensitive at higher temperatures. In contrast to graphene
NS-loaded SnO2 NFs, pristine SnO2 NFs showed a maximum
response of 1.94 at 325 °C. The response of the graphene/
SnO2 NFs was 76.8% higher than that of the pristine SnO2

NFs at their respective optimal temperatures. The responses
of both pristine SnO2 and graphene NS-loaded SnO2 NFs
exhibited a bell-shaped behavior, which is consistent with the
literature. This trend, which possessed a volcano shape, was
observed to increase in height and shift towards lower tem-
peratures when the semiconductor materials were loaded with
catalyst materials (e.g., transition metal, graphene, etc).
Similar trends were also reported elsewhere [13, 36–39], for
SnO2 for H2 gas [37], CdIn2O3 nanocrystals for ethanol gas
[38], and Au-functionalized reduced graphene oxide-loaded
SnO2 nanofibers for CO gas [39]. We expected that chemical
reactions will be deactivated at low temperatures, whereas
adsorption will be suppressed at temperatures that are too
high [40, 41].

Figure 1. Schematic illustration of the preparation of graphene NSs-loaded SnO2 NFs with the electrospinning process.
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To examine and compare the sensing properties of gra-
phene NS-loaded SnO2 NFs with pristine SnO2 NFs, we first
exposed the sensors to trace concentrations (1, 3, and 5 ppm)
of a relatively weak reducing gas (C7H8) at the optimal
temperature of 300 °C. This was done to investigate the effect
of loading graphene and to select the optimal amount of
graphene NSs in the SnO2 NFs needed to obtain the max-
imum response (as compared to the rest of the sensors). The
dynamic resistance curves of the pristine SnO2 and graphene
NSs-loaded SnO2 NFs containing various amounts of gra-
phene (0.05, 0.1, 0.3, 0.5, 1, and 1.5 wt%) are shown as a
function of the gas concentration in figure 5(a). The resistance
of the sensors decreased upon exposure to the C7H8 and
returned to its base resistance upon removal of the gas. The
sensing behavior of the graphene NS-loaded SnO2 NFs was
similar to that of a typical n-type material-based gas sensor
(i.e., a decrease was observed in the resistance upon intro-
duction of a reducing gas). This suggests that the electrical

conductivity mainly occurred through the n-type SnO2

semiconducting oxide as opposed to the p-type graphene NSs.
This is likely caused by the low content of graphene. The
responses of all the sensors to C7H8 gas at 300 °C are shown
in figure 5(b). The response of the sensors increased as the gas
concentration increased. It is also clear that the SnO2 NF-
containing graphene was more sensitive to trace concentra-
tions of the gas compared to pristine SnO2 NFs at the same
operating temperature. However, the optimal amount of gra-
phene was observed to be 0.5 wt% with the highest response
of 3.13 and a very short response time of 51.2 s as compared
to the rest of the sensors (at 1 ppm of C7H8 gas at 300 °C;
figures 5(c) and (d)). In contrast, the response of pristine SnO2

NFs was 1.7 with a response time of 125 s. The response of
graphene NS-loaded SnO2 NFs increased by 84.1% and had
an improved response time relative to SnO2 NFs. The
response and recovery times of all sensors to 1 ppm of C7H8

are shown in figure 5(d). The shortest response time was

Figure 2. SEM images of the synthesized graphene NSs-loaded SnO2 NFs with the graphene content of (a) 0.05, (b) 0.1, (c) 0.3, (d) 0.5, (e) 1,
and (f) 1.5 wt% (upper-right insets: low resolution SEM images).
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obtained by inserting 0.5 wt% graphene. However, the
response of the sensors decreased significantly for con-
centrations higher than 0.5 wt% graphene. All the remaining
sensing experiments were carried out with sensors containing
the optimized amount of graphene (0.5 wt%). The bell-shaped
response behavior as a function of the graphene concentration

is discussed below after we establish the sensing mechanism
of graphene NS-loaded SnO2 NFs.

To investigate the selectivity and the effect of interfering
gases, graphene NS-loaded SnO2 NFs were tested for other
reducing and toxic gases, such as C6H6, C7H8, CO, CO2, and
H2S, at the optimal operating temperature. The gas

Figure 3. (a) TEM mage of a graphene NSs-loaded SnO2 NFs. (b) Enlarged HR-TEM image. (c) Lattice-resolved HR-TEM image. (d)
Corresponding SAED pattern. (e) Low-magnification TEM image and (f) lattice-resolved TEM image of the pure graphene (inset: associated
FFT pattern).
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concentration was kept very low, ranging from 1 to 5 ppm, as
summarized in figure 6. The dynamic resistance curves of
pristine SnO2 and graphene NS-loaded SnO2 NFs are shown
in figures 6(a) and (b), respectively. Figure 6(c) shows the
responses of graphene NSs-loaded SnO2 NFs to 1 ppm of gas
relative to the responses of pristine SnO2 NFs. Graphene NS-
loaded SnO2 NFs showed significantly higher responses than
those of pristine SnO2 NFs. However, significant selectivity
towards a particular gas was not observed. This is probably
due to the very low concentration of gases. However, analysis
of the results revealed that the graphene/SnO2 sensors were
quite selective for H2S gas at higher concentrations. The
response of graphene NS-loaded SnO2 NFs for 1 ppm of H2S
is 6.46, which is 112.5% higher than that of pristine SnO2

NFs (figure 6(c), table 1). Moreover, an increase in 134.3% in
the response as compared to pristine SnO2 NFs was observed
at 5 ppm of H2S at the same optimal temperature (table 1).
Graphene/SnO2 sensors showed an H2S response of 11.6
with an extremely short response time of 3.2 s.

To understand the sensing mechanism of graphene/SnO2

NFs, we first consider the behaviors of NFs made of n-type
materials (such as SnO2). The higher sensitivity of NFs is

typically attributed to the resistance modulation that arises from
the following mechanisms. First, the resistance is modulated
along the surface of the NFs. Secondly, the resistance mod-
ulation also arises because of potential barriers, which develop
at the grain boundaries of the nanograins of NFs. When
reducing analytes (e.g., H2S) are inserted, the reducing gas
molecules react with the chemisorbed oxygen at the surface
and grain boundaries of the NFs and donate electrons back to
the sensor surface. This reduces the potential barriers and
increases the conductivity. In the case of H2S, the pre-adsorbed
oxygen is released in the form of H2O and SO2 according to
the reaction ( ) ( ) ( )+  + +- -H S 3O SO H O 3e .g g g2 2 2 These
sensing mechanisms typically operate in n-type metal oxide-
based gas sensors with nanofibrous structures. Our exper-
imental results were consistent with the aforementioned
mechanism, and the resistance of the pristine SnO2 NFs
decreased upon introduction of reducing gases (e.g., H2S).

Graphene/SnO2 heterointerfaces may also be involved in
the sensitivity enhancement of graphene NS-loaded SnO2

NFs (figure 7). In the heterojunctions, the work functions of
SnO2 and graphene are 4.55 and 4.60 eV, respectively
[12, 42–44], and the Fermi energy of SnO2 is lower than that
of graphene. Upon the generation of graphene/SnO2 hetero-
interfaces, electrons will flow from SnO2 to graphene, ulti-
mately equilibrating the Fermi level. This charge transfer will
form a potential barrier at the heterojunctions, causing the
vacuum energy level and the energy band to bend. As a first
possibility, the initial transfer of electrons from SnO2 to
graphene will develop a surface depletion region on the SnO2

surface. As the initial resistance increases, the same change in
resistance upon introduction/removal of a target gas will lead
to higher sensitivity. As a second possibility, the electrical
current across the SnO2/graphene interfaces will provide an
additional change in the resistance. The reducing gases and
oxidizing gases will react with adsorbed oxygens, such as O−,
which provide and remove electrons, respectively. Accord-
ingly, reducing and oxidizing gases will decrease and increase
the height of potential barriers to electrons, respectively. The
reported literature has indicated that the charge flow between
different work functions depends on graphene thickness at the
interfaces [45]. Ziegler et al pointed out that the work func-
tion decreases with increasing the number of layers (i.e.
thickness) of graphene [46]. By the way, the graphene used in
the presetnwork has been exfoliated from the expandable
graphite (Hyundai Coma Industry), corresponding to a few-
layer graphene. Accordingly, the increase of the graphene
content in the graphene NS-loaded SnO2 NFs will possibly
increase the presence of the thicker graphene NSs, resulting in
the decrease of the work function of some graphene NSs. If
the work function of graphene NSs becomes decreased, the
Fermi energy of SnO2 can be higher than that of graphene.
Upon the generation of graphene/SnO2 heterointerfaces,
electrons will flow from graphene to SnO2, ultimately equi-
librating the Fermi level. This charge transfer will form a
potential barrier at the heterojunctions, causing the vacuum
energy level and the energy band to bend. The initial transfer
of electrons from graphene to SnO2 will not develop a surface
depletion region on the SnO2 surface and will instead

Figure 4. (a) Dynamic resistance curves of the pristine SnO2 and
0.5 wt% graphene NSs-loaded SnO2 NFs at various temperatures in
the range of 200 °C–400 °C. (b) Summarized responses of pristine
SnO2 and graphene NSs-loaded SnO2 NFs toward 1 ppm of C7H8 as
a function of temperature.
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decrease the resistance. With decreased initial resistance, the
modulation of the same amount of resistance, upon the
introduction/removal of a target gas, will lead to lower sen-
sitivity. Accordingly, the presence of thicker graphene NS
sheets will not favor the enhancement of sensitivity. On the
contrary, the presence of thinner graphene NSs is able to
enhance the sensitivity. The increase of the graphene content
in the graphene NS-loaded SnO2 NFs will increase the
amount of thicker graphene NSs, as well as that of thinner
NSs. Accordingly, it is not possible that the change of the
graphene content will significantly change the sensor
response of the graphene NS-loaded SnO2 NFs.

In the case of graphene NS-loaded SnO2 NFs, we first
examined the nature and role of graphene NSs in the SnO2

NFs. The incorporation of graphene led to an increase in the
baseline resistance of the pristine SnO2 NFs, as shown in
figure 8. The maximum resistance was obtained by using the
optimal amount of graphene (0.5 wt%). This indicates the
p-type or electron accepting nature of the graphene in SnO2

NFs. It also shows that the current flows mainly through
interconnected SnO2 NFs. This observation is consistent with

previous reports [13, 47]. From this, we can also understand
the bell-shaped response behavior of graphene NSs-loaded
SnO2 NFs (figure 5(c)). The specific surface area can be
another important parameter to affect the sensing properties of
NFs with varying graphene NSs content. According to
figures 2(a)–(f), the size of the nanograins, the diameter,
uniformity and connectivity of the NFs were basically similar,
regardless of varying graphene NSs contents, suggesting that
microstructure and morphology of individual SnO2 NFs were
not significantly affected by varying the graphene NSs con-
tents in the range of 0.05–1.5 wt%. With these indirect evi-
dences, along with the obvious change of the conductivity of
NFs as a function of the graphene NSs content, it is more
likely that the conductivity is mainly responsible for the
optimum graphene NSs content, in comparison to the influ-
ence of the specific surface area.

In the case of low to moderate graphene loadings
(0.05–0.5 wt%), conductive graphene NSs dispersed into the
NFs, and active interfaces formed between graphene and
SnO2. This increases the sensor resistance and the heights of
potential barriers. When a reducing gas was introduced, the

Figure 5. (a) Dynamic resistance curves of the pristine SnO2 and graphene NSs-loaded SnO2 NFs with various amounts of graphene (0.05,
0.1, 0.3, 0.5, 1 and 1.5 wt%). The sensing gas was C7H8 with concentrations of 1, 3, and 5 ppm, respectively, at 300 °C. (b) Summarized
responses as a function of gas concentration. (c) Responses toward 1 ppm of C7H8 as a function of graphene content. (d) Response and
recovery times for 1 ppm of C7H8 at 300 °C.
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trapped electrons from the oxygen are released back into the
SnO2 NFs; thus, a significant change in the resistance was
observed. Alternatively, in the case of loading of high con-
centrations of graphene, we expected that the overall sensor
performance would decrease. First, since the electrical con-
duction mainly occurs through the SnO2 grains, increasing the
graphene content may block electrical currents through SnO2

grains, leading to an increase in the initial resistance. How-
ever, this will increase the sensor response (defined as Ra/Rg).
Since the initial resistance (Ra) is smaller, the same decrease
in resistance caused by the introduction of a reducing gas
yields a higher Ra/Rg value. Accordingly, this cannot account
for the observed decrease in the sensor response that is caused
by increasing the graphene content. Secondly, when a suffi-
cient amount of graphene is provided, graphene NSs begin to
connect with each other to provide additional pathways for
the flow of electrons. In this case, the flow of electrons occurs
mainly through higher conducting pathways along graphene
NSs. This will decrease the initial resistance. The same
decrease in the resistance caused by the introduction of a
reducing gas yields a lower Ra/Rg value, thereby reducing the
sensor response. This type of behavior has been reported
elsewhere as a function of the graphene concentration [13]. In
fact, such behavior has been widely observed when a metal
oxide is sensitized by a catalyst or an additive [19, 48].
Therefore, there should be an optimal loading of graphene
that achieves high sensing performance in SnO2 NFs. This
value was around 0.5 wt% in these experiments. This optimal
amount of graphene may seem too small to cause a significant

Figure 6. Dynamic resistance curves of (a) pristine SnO2 NFs (b) 0.5 wt% graphene NSs-loaded SnO2 NFs. (c) Summarized responses of the
pristine SnO2 and 0.5 wt% graphene NSs-loaded SnO2 NFs for 1 ppm of C6H6, C7H8, CO, CO2, and H2S gases.

Table 1. Sensor responses of the pristine SnO2 and 0.5 wt%
graphene NSs-loaded SnO2 NFs for 1 and 5 ppm of C6H6, C7H8,
CO, CO2, and H2S gases.

Pristine SnO2 NFs
0.5 wt% graphene NSs-

loaded SnO2 NFs

Gas
concentration (1 ppm) (5 ppm) (1 ppm) (5 ppm)

CO 4.16 4.79 5.59 7.34
CO2 2.61 2.92 3.68 3.77
C7H8 1.7 1.8 3.13 3.44
C6H6 2.35 2.5 4.76 6.2
H2S 3.04 4.95 6.46 11.6
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change, but the actual volume and number of graphene NSs
incorporated are very large due to the very small density of
graphene. Thus, there are a large number of graphene/SnO2

heterointerfaces, which have a significant effect on the
resistance modulation of SnO2 NFs.

4. Conclusions

We compared the gas sensing characteristics of graphene NS-
loaded SnO2 NFs and pristine SnO2 NFs at very low

concentrations of C6H6, C7H8, CO, CO2, and H2S at various
temperatures ranging from 200 °C to 400 °C. FE-SEM and
HR-TEM analyses confirmed the presence of graphene NSs
and revealed the nature of their interaction with the nano-
grains of the polycrystalline SnO2 NFs. The optimal amount
of graphene and the optimum operating temperature were
observed to be 0.5 wt% and 300 °C, respectively. The loading
of graphene NSs into SnO2 NFs enhanced the sensitivity and
lowered the optimal operating temperature of the SnO2 NFs.
The optimized graphene NS-loaded SnO2 NFs exhibited
sensor responses of 6.46 and 11.6 at 1 and 5 ppm of H2S gas,
respectively. These sensors also showed an extremely short
response time of 3.2 s at 5 ppm of H2S gas. Apart from the
modulated resistance along the surface and in the grain
boundaries of the nanograins in the SnO2 NFs, the enhanced
sensing capabilities caused by the incorporation of graphene
NSs were ascribed to a variety of mechanisms. These include
the catalytic effects of graphene and the generation of SnO2/
graphene heterointerfaces. Since graphene NS-loaded SnO2

NFs showed excellent sensitivity towards very low con-
centrations (1–5 ppm) of gases, graphene-loaded SnO2 NFs
are potential candidates for next-generation gas sensors.
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